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Introduction

The development of new reactions that allow an increase in
molecular complexity from readily available starting materi-
als, but in an environmentally friendly way and with atom
economy, is one of the major goals in modern synthetic or-
ganic chemistry.[1] Among the reactions available for this
purpose, transition-metal-catalyzed cycloadditions represent
a powerful tool for the construction of polycyclic molecules
under very mild conditions.[2] Metal catalysts can complex to
an olefin, diene, or acetylene and significantly modify the
reactivity of this moiety to provide new opportunities for
highly selective cycloaddition reactions. For carbocyclic sys-
tems containing six-membered rings, the inter- and intramo-
lecular metal-catalyzed [2+2+2] cycloaddition reactions of
alkynes are very well established for the preparation of nu-
merous benzene and polycyclic benzene derivatives (reac-
tion type 1, Scheme 1).[3] Heteroarenes and unsaturated het-
erocycles have also been obtained by using alkynes and
carbon–heteroatom multiple bonds, such as nitriles (reaction type 2), heterocumulenes (reaction type 3), or carbonyls (re-

action type 4).[4]

However, the corresponding metal-catalyzed [2+2+2] cy-
cloadditions between alkynes and alkenes to give 1,3-cyclo-
hexadienes are much less developed owing to either the ne-
cessity of equimolar amounts of metal promoters[5] or to the
lack of generality (reaction types 5 and 6, Scheme 1).[6]

As a further contribution to the above methodology, we
recently described a new “formal” [2+2+2] cycloaddition of
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Scheme 1. Metal-catalyzed [2+2+2] cycloaddition reactions.
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terminal 1,6-diynes 1 with acyclic alkenes 2 in the presence
of 10% of an equimolar amount of [Ru ACHTUNGTRENNUNG(CH3CN)3Cp*]PF6

(Cp*=pentamethylcyclopentadienyl) and Et4NCl to give
1,3-cyclohexadienes 4 (Scheme 2).[7]

We also found that cyclic alkenes 5 reacted with diynes 1
to afford tricyclic cyclohexadienes 6 (Scheme 3).[7] Unlike
their acyclic alkene analogues 2, the double bonds in cyclo-
hexadienes 6 are in the position expected for a [2+2+2] cy-
cloadduct (as observed by Itoh).[6f,g]

Our mechanistic hypothesis for the Ru-catalyzed reaction
of diynes and alkenes involves two possible pathways, de-
pending on the alkene used (Scheme 4).[8] When mixed with

Et4NCl, the cationic catalyst [RuACHTUNGTRENNUNG(CH3CN)3Cp*]PF6 probably
generates the neutral complex [RuL2ClCp*] (I, L=

CH3CN), as suggested by changes in the 1H NMR spec-
trum.[9] Coordination to diyne 1 followed by oxidative cou-
pling would form the bis-carbene species III, which after co-
ordination to the alkene would give rise to ruthenacyclic
species of type IV for acyclic alkenes (endo approach) or
VIII for cyclic alkenes (exo approach). Formation of Ru-bi-
cyclic complexes V and IX followed by electrocyclic opening
would afford ruthenacycloheptadienes VI and X, from
which two alternatives can be envisioned depending on the
nature of the alkene: 1) the well-established reductive elimi-
nation to cyclohexadienes 6 in the case of cyclic alkenes[6g]

and 2) a new b-elimination leading to the ruthenium hydride
VII, followed by a reductive elimination to give the open
hexatrienes 3 in the case of acyclic alkenes. The hexatrienes
3 undergo a pure thermal disrotatory 6e� p-electrocycliza-
tion to give the observed cyclohexadienes 4.

Herein, we present our recent advances in the regioselec-
tivity of the “formal” Ru-catalyzed [2+2+2] cycloaddition
when using unsymmetrical diynes and also interesting new
reaction avenues when using disubstituted diynes as part-
ners.[10]

Results and Discussion

Regioselectivity : For a better understanding of the rutheni-
um-catalyzed cycloaddition of diynes to alkenes, we now de-
cided to explore the regioselectivity of the reaction by using
unsymmetrical 1,6-diynes. For this purpose, reactions be-

tween selected alkenes and un-
symmetrical 1,6-diynes 7 were
performed. Slow addition of a
solution of 7a in DMF to a
heated DMF solution of
methyl acrylate (2a) and the
usual catalytic mixture afford-
ed exclusively the cyclohexa-
diene 8aa in excellent yield
(moderate-to-good yields were
obtained with heterosubstitut-
ed diynes 7’a and 7’’a, Table 1,
entry 1).[11] When the substitut-
ed alkene 2b, with a metal-co-
ordinating heteroatom, and the
nonactivated alkene 2c were
used, disubstituted cyclohexa-
dienes 8ab and 8ac were ob-
tained in quite good yields (en-
tries 2 and 3). As expected, all
the observed products derive
from the corresponding Ru
complexes V (proposed inter-
mediate), in which the inser-
tion of the alkene occurs at the
less-substituted Ru�C bond of

Scheme 2. “Formal” Ru-catalyzed [2+2+2] cycloaddition of terminal 1,6-
diynes 1 with acyclic alkenes 2.

Scheme 3. Standard RuII-catalyzed [2+2+2] cycloaddition of 1,6-diynes 1
with cyclic alkenes 5.

Scheme 4. Proposed mechanisms for the “formal” and standard Ru-catalyzed [2+2+2] cycloadditions of termi-
nal 1,6-diynes with acyclic and cyclic alkenes.
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ruthenacyclopentadienes IV and the less-bulky substituent
(R2=H) is located a to the ruthenium (steric control).

To gain further insight into the cata-
lytic species operative in the reaction,
we carried out the above experiments
by using a preformed neutral rutheni-
um complex, [RuCl ACHTUNGTRENNUNG(cod)Cp*] (cod=

1,5-cyclooctadiene) instead of the
equimolar mixture of the cationic

complex [Ru ACHTUNGTRENNUNG(CH3CN)3Cp*]PF6 with Et4NCl (Table 1, en-
tries 1–4, yields in brackets). In all cases, comparable yields
were obtained, which showed that most probably the neutral
species “RuClCp*”, generated in situ when the cationic
complex is used, is the operative catalytic species. Thus, for
convenient reasons we used the mixture of [Ru-
ACHTUNGTRENNUNG(CH3CN)3Cp*]PF6 with Et4NCl throughout the whole study.

We then evaluated the influence of other substituents in
the diyne partner by reaction of selected alkenes with un-
symmetrical 1,6-diyne 7b containing a conjugated methoxy-
carbonyl group and 7c containing a phenyl group (Table 1,
entries 5–8 and 9–12, respectively). Both electron-poor and
conjugated diynes showed similar or slightly lower reactivity
than the electron-rich diyne 7a when reacted with monosub-
stituted alkenes. As above, the reaction took place regiose-
lectively producing the expected products (steric control)
for a “formal” RuII-catalyzed [2+2+2] cycloaddition with
acyclic alkenes.

Interestingly, the reaction also took place stereoselectively
illustrated by the fact that the reaction of 7a with dimethyl

maleate (2d) only gave the trans-substituted cyclohexadiene
8ad (Table 1, entry 4). Diynes 7b and 7c failed to react with
dimethyl maleate 2d, probably due to severe steric hin-
drance (entries 8 and 12).

Unexpectedly, when 2,5-dihydrofuran (5a) was used, the
bis-cyclopropanated product 9 was obtained in a reasonably
good yield (Scheme 5). The structure of 9 was elucidated by

X-ray analysis (Figure 1, see the Supporting Information for
details).[12] Interestingly, this result clearly contrasts with
that obtained between 5a and 1a (X=C ACHTUNGTRENNUNG(CO2Me)2) in which

an excellent 92% yield of cyclohexadiene 6a was ob-
tained.[7] The formation of the bis-cyclopropane 9 is proba-
bly due to the presence of the methyl group in 7a, which in-
hibits the standard [2+2+2] cycloaddition mechanism from
the corresponding ruthenabicyclocarbene IX favoring the
reductive elimination to a cyclopropane ring; then, a second
cyclopropanation of the resulting Ru–carbene species gives
the observed bis-cyclopropane product 9.[13]

Cycloadditions of disubstituted 1,6-diyne 10 with acyclic al-
kenes : We next turned our attention to the Ru-catalyzed re-
action of 2,7-nonadiyne 10, which possesses two internal

Table 1. “Formal” RuII-catalyzed [2+2+2] cycloaddition of unsymmetri-
cal diynes 7 with acyclic alkenes 2.

Entry R3 Diyne R1 R2 Alkene 8 Yield [%][a]

1 Me 7a CO2Me H 2a 8aa 90 (82)
7’a 8’aa 60
7’’a 8’’aa 50

2[b] Me 7a CH2OEt H 2b 8ab 70 (73)
3 Me 7a C5H11 H 2c 8ac 69 (66)
4 Me 7a CO2Me CO2Me 2d 8ad 70 (60)
5 CO2Me 7b CO2Me H 2a 8ba 68
6 CO2Me 7b CH2OEt H 2b 8bb 70[b]

7 CO2Me 7b C5H11 H 2c 8bc 63
8 CO2Me 7b CO2Me CO2Me 2d – –[c]

9 Ph 7c CO2Me H 2a 8ca 40
10 Ph 7c CH2OEt H 2b 8cb 78[b]

11 Ph 7c C5H11 H 2c 8cc 47
12 Ph 7c CO2Me CO2Me 2d – –[c]

[a] Isolated yields from reactions performed at 80 8C by slow addition,
over 4 h, of 0.5 mmol of 7 in DMF to a mixture of 3 equiv of 2, 10%
Et4NCl, and 10% [RuACHTUNGTRENNUNG(CH3CN)3Cp*]PF6 in DMF (conditions A). In
brackets, yields when neutral [RuCl ACHTUNGTRENNUNG(COD)Cp*] complex was used under
the same reaction conditions. [b] Reaction performed by using 10 equiv
of 2 without slow addition of 7 (conditions B). [c] Unreacted alkene 2
and diyne 7 were recovered.

Scheme 5. RuII-catalyzed reactions of diynes 7a and 1a with dihydrofuran
5a.

Figure 1. ORTEP diagram of the structure of bis-cyclopropane 9.
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alkyne termini,[14] with selected acyclic alkenes (Table 2). To
our surprise, when a solution of diyne 10 in DMF was
slowly added over 4 h to a heated solution of alkene 2a and
the usual catalytic mixture, an almost 1:1 ratio of the unex-
pected cyclohexadiene regioisomer 11a and the new methyl-
ene derivative 12a[15] was obtained in a 55% combined yield
(Table 2, entry 1). This is the first time that the observed
product, cyclohexadiene 11a, does not present the substitu-
ent (CO2Me) in the diene moiety. Furthermore, methylene
derivative 12d, with the two esters in relative trans positions,
was exclusively obtained in a moderate 42% yield when the
alkene partner was maleate 2d (entry 2).[16] Conversely,
when allylic ether 2b was used, the major product was the
expected cyclohexadiene 11b (65%) with the open hexa-
triene 13 (12%) formed as an unexpected minor product
(entry 3). Nonactivated 1-heptene (2c) gave the expected
“formal” [2+2+2] cycloadduct 11c in low yield (31%)
(entry 4), thus demonstrating the lower reactivity of the
starting disubstituted diyne 10 in these reactions (see
Table 1 for comparison).

For a better understanding of the above reactions, we per-
formed experiments at room temperature by using alkenes
2a and 2b under conditions B. Addition of diyne 10 at room
temperature to a DMF solution of 10 equiv of methyl acry-
late (2a) containing the catalytic mixture afforded exclusive-
ly the open triene 14[17] in a 35% yield (Scheme 6). It was
necessary to heat a solution of the open triene in CDCl3 at
50 8C for 36 h to obtain cyclohexadiene 11a in quantitative

yield through a 6e� p-electrocyclization. Further heating of
11a at 80 8C for several hours did not lead to any change,
which indicated that neither 14 nor 11a are intermediates in
the formation of 12a (Scheme 6).

The formation of the open triene 14 can be explained on
the basis of the formation of the less-
crowded ruthenabicycle Va’ (pro-
posed intermediate), which results
from the coordination and addition
of alkene 2a to the ruthenium bis-
carbene, thus locating the alkene
substituent a to the ruthenium, in which coordination of the
carbonyl group to the ruthenium cannot be ruled out.

Reaction of alkene 2b with diyne 10 at room temperature
in the presence of the Ru catalyst gave the two isomeric tri-
enes 15 and 13 in 49 and 15% yields, respectively. Heating
triene 15 at 50 8C for 22 h smoothly afforded cyclohexadiene
11b in quantitative yield (Scheme 7).

Formation of isomeric tri-
enes 15 and 13 can be ex-
plained by considering the two
regioisomeric ruthenacycles
VIb and VIb’ (Scheme 8). b-
Hydride elimination from VIb
followed by reductive elimina-
tion would afford triene 15,
whereas b-hydride elimination
of the exocyclic hydrogen[18]

from VIb’ followed by reduc-
tive elimination and a subse-
quent [1,5]-hydrogen shift of
the resulting triene 16 would
afford 13 (Scheme 8).

Finally, dimethyl maleate
(2d) did not participate in the
reaction with diyne 10 at room
temperature, with only a small
amount of the dimer of the
diyne isolated from the reac-
tion.[19] Surprisingly, the slow
addition (4 h) of a solution of
diyne 10 in DMF to a heated
solution of dimethyl fumarate
(2d’)[20] containing the catalytic
mixture gave the same yield of
the same methylenecyclohex-
ene derivative 12d as when 2d

Table 2. “Formal” RuII-catalyzed [2+2+2] cycloaddition of disubstituted diyne 10 with acyclic alkenes 2.

Entry Alkene Products Yield [%][a]

1 R1=CO2Me R2=H 2a 55[b]

2 R1=CO2Me R2=CO2Me 2d 42

3[c] R1=CH2OEt R2=H 2b 65, 12

4 R1=C5H11 R2=H 2c 31

[a] Isolated yields following conditions A as in Table 1. [b] Isolated yield of a 1.25:1 mixture of 11a and 12a.
[c] Conditions B, as in Table 1 were used.

Scheme 6. “Formal” Ru-catalyzed [2+2+2] cycloaddition of disubstituted
diyne 10 and methyl acrylate (2a).
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was used (Table 2, entry 2). The formation of compounds
12a and 12d and the reactivity shown by trans alkenes sug-
gests the possibility of a new competitive pathway to the
“formal” RuII-catalyzed [2+2+2] cycloaddition of diynes to
alkenes, which is operative only when internal alkynes such
as 10 are used (Scheme 9).

The proposed mechanism would start with the formation
of Ru–bis-carbene XI by coordination of diyne 10 to I fol-
lowed by oxidative coupling. If the reaction is performed at
80 8C or above, activation of a C�H bond of an a-substitu-
ent by an electrophilic carbene would occur to afford the
ruthenium carbene XII,[21] which rearranges to the allyl–
ruthenium species XIII. These types of complexes (XII and
XIII) have been observed and characterized by X-ray dif-
fraction in the group of Kirchner when monosubstituted al-
kynes were reacted with an equimolecular amount of the
cationic Ru complex [Ru ACHTUNGTRENNUNG(CH3CN)2(Cp)SbPh3]PF6.

[22] If a
conjugated alkene is present, it is able to insert into the Ru
h3-allyl bond to give rise to the ruthenacycloheptene XIV
that, after reductive elimination, would afford the methyle-
necyclohexene derivative 12 and, therefore, make the whole
process catalytic. The observed relative trans geometry in
12, regardless of whether maleate 2d or fumarate 2d’ is
used, can be explained only if the trans-alkene 2d’ is in-
volved in the reaction.[23]

Conclusion

The course of the RuII-catalyzed [2+2+2] cycloaddition be-
tween 1,6-diynes and alkenes to give 1,3-cyclohexadienes
changes with the nature of the starting alkene: 1) if cyclic al-
kenes are present, standard tricyclic 1,3-cyclohexadienes are
obtained from the reductive elimination of intermediate X ;
2) if acyclic alkenes are used, linear coupling of diynes and
alkenes to give 1,3,5-hexatrienes occurs through b-elimina-
tion of intermediate VI followed by reductive elimination.
Then, a pure thermal 6e� p-electrocyclization gives the bicy-
clic 1,3-cyclohexadienes. The whole cascade process can be
considered as a “formal” [2+2+2] cycloaddition of alkynes
and alkenes. Experimental observations and DFT calcula-
tions support this mechanism. When a nonterminal 1,6-
diyne 10 and conjugated alkenes were used, new methylene-
cyclohexene derivatives 12 were obtained from the initially
formed substituted Ru–bis-carbene of type XI.

Experimental Section

General procedures for the Ru-catalyzed reactions between alkenes and
1,6-diynes

Conditions A: synthesis of trimethyl 7-methyl-1,3,6,7-tetrahydro-2H-
indene-2,2,5-tricarboxylate (8aa). Alkene 2a (129 mg, 0.14 mL, 1.5 mmol,
3 equiv) was added to a stirred solution of [Ru ACHTUNGTRENNUNG(CH3CN)3Cp*]PF6 (25 mg,
10% mol) and Et4NCl (8 mg, 10% mol) in DMF (1.5 mL) at room tem-
perature. After stirring for 10 min, a solution of diyne 7a (111 mg,
0.5 mmol, 1 equiv) in DMF (2 mL) was added over 4 h by syringe pump
and the solution was heated at 80 8C. Stirring was continued for 1 h after
completion of the slow addition. The reaction was quenched with saturat-
ed aqueous NH4Cl (10 mL) and extracted with diethyl ether (3R10 mL).
The organic layers were combined, dried over anhydrous Na2SO4, and
evaporated under vacuum. The resulting residue was chromatographied

Scheme 7. “Formal” Ru-catalyzed [2+2+2] cycloaddition of disubstituted
diyne 10 and ethyl allyl ether (2b).

Scheme 8. Formation of trienes 15 and 13 from ruthenacycloheptadiene
intermediates VIb and VIb’.

Scheme 9. New RuII-catalyzed cycloisomerization of diyne 10 and conju-
gated alkenes 2.
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on silica gel by using ethyl acetate/hexane 2:8 as the eluent to afford 1,3-
cyclohexadiene 8aa in 90% yield.

Conditions B: synthesis of dimethyl 6-(ethoxymethyl)-4-methyl-1,3,4,5-tet-
rahydro-2H-indene-2,2-dicarboxylate (8ab). A solution of [Ru ACHTUNGTRENNUNG(CH3CN)3
Cp*]PF6 (25 mg, 10% mol) and Et4NCl (8 mg, 10% mol) in DMF
(1.5 mL) was prepared in a 10 mL round-bottomed flask under argon.
After stirring for 10 min at room temperature, alkene 2b (430 mg,
0.57 mL, 5 mmol, 10eq) was added. After stirring for another 10 min,
diyne 7a (111 mg, 0.5 mmol, 1 equiv) was added and the resulting solu-
tion was heated at 80 8C for 2 h. The reaction was quenched with saturat-
ed aqueous NH4Cl (10 mL) and extracted with diethyl ether (3R10 mL).
The organic layers were combined, dried over anhydrous Na2SO4, and
evaporated under vacuum. The resulting residue was chromatographied
on silica gel by using ethyl acetate/hexane 2:8 as the eluent to afford 1,3-
cyclohexadiene 8ab in 70% yield.
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